Acta Cryst. (1998). C54, 234-236

Two Methylsulfanylmethylene Derivatives of Meldrum's Acid

Robert O. Gould, Steven G. Harris, Hamish McNab, Simon Parsons and Kirsti Withell
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland. E-mail: s.parsons@ed.ac.uk

(Received 8 May 1997; accepted 21 October 1997)

Abstract

Functionalization of methylsulfanylmethylene Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione) with aryl or thienyl substituents, to give $5-[(p-t e r t-$ butylphenyl)(methylsulfanyl) methylene]-2,2-dimethyl-1,3-dioxane-4,6-dione, $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$, and 2,2-dimethyl-5-[(methylsulfanyl)(2-thienyl)methylene]-1,3-dioxane-4,6dione, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{2}$, results in a lengthening of the $\mathrm{C}-\mathrm{S}$ single bond and the adoption of essentially a boat conformation by the Meldrum's acid heterocycle.

Comment

We have previously published the crystal structure of methylsulfanylmethylene Meldrum's acid, (1) (Blake et al., 1989), and as part of a continuing study on the effects of substitution on the structural chemistry of Meldrum's acid derivatives, we report here the effect of the replacement of the methylene H atom with an aryl group, (2), and with a 2 -thienyl group, (3). This latter substituent exhibits twofold rotational disorder and so, in this case, our comments are restricted to the remainder of the molecule.

(1)

(2)

(3)

The S1-C7 bond lengths in (2) and (3) [1.738 (1) and 1.744 (4) \AA, respectively] are significantly longer than the corresponding distance in (1) [1.694 (3) A], and this may reflect the electron donation by the additional ring into the methylenedioxanedione unit. There appears to be a consistent trend towards a more single-bond character in the C5-C7 bonds of (2) and (3) [1.368 (2) and 1.377 (5) \AA, respectively] than in (1) [1.356(4) A]. The dioxanedione ring in (3) has local mirror symmetry to within experimental error, but in

Fig. I. A view of (2) with the atom-numbering scheme. Displacement ellipsoids enclose 30% probability surfaces.

Fig. 2. A view of (3) with the atom-numbering scheme. Displacement ellipsoids enclose 30% probability surfaces. The minor disorder component is not shown.
(2), C4-C5 is significantly longer [1.485 (2) \AA] than C5-C6 [1.467 (2) Å].

There is a substantial difference between the angle at the S atom in (1) $\left[100.94(16)^{\circ}\right]$ and the related angles at S1 in (2) and (3) [104.94 (7) and 104.1 (2) ${ }^{\circ}$, respectively], which may be due to steric interaction with the additional phenyl or thiophene rings. Similarly, the angle C5-C7-S1 is much smaller in (2) [120.3(1) ${ }^{\circ}$] and (3) $\left[121.2(3)^{\circ}\right]$ than in (1) $\left[126.16(3)^{\circ}\right]$, as is the angle C4-C5-C6 [116.4 (1) and 115.6 (3) ${ }^{\circ}$ in (2) and (3),
compared with $120.2(3)^{\circ}$ in (1)]. Whereas the dioxanedione ring systems in (2) and (3) can be described as being mainly in a boat conformation (16% chair, 1% twist boat, 83% boat in both cases; Gould et al., 1995), in (1), the O1-C6-C5-C4-O3 moiety is effectively planar, the ring being 31% chair, 1% twist boat and 68% boat. Qualitatively expressed, a second substituent on C 7 apparently induces a distortion of the dioxanedione ring, which forces C 7 and the O 4 and O 6 carbonyl groups in opposite directions with respect to the best $\mathrm{Ol}-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 3$ plane. The plane of the aryl ring in (2) lies at $114.2(1)^{\circ}$ with respect to the S1-C7-C8 plane, which itself makes an angle of only $9.4(1)^{\circ}$ with the $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ plane; the corresponding parameters for (3) are $114.1(2)$ and $5.6(3)^{\circ}$, respectively.

Experimental

Compounds (2) and (3) were prepared according to the procedures described by Hunter \& McNab (1995). Crystals of (2) were grown by slow evaporation of an acetone solution, while those of (3) were grown by sublimation.

Compound (2)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=334.43$
Triclinic
$P \overline{1}$
$a=9.4818$ (9) \AA
$b=9.7365(14) \AA$
$c=10.6089(10) \AA$
$\alpha=93.469$ (8) ${ }^{\circ}$
$\beta=113.697$ (5) ${ }^{\circ}$
$\gamma=97.890(8)^{\circ}$
$V=881.08(16) \AA^{3}$
$Z=2$
$D_{x}=1.26 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer equipped with an Oxford Cryosystems lowtemperature device (Cosier \& Glazer, 1986)
$\omega-\theta$ scans with on-line profile fitting (Clegg, 1981)

Absorption correction:
ψ scans (North et al., 1968)
$T_{\text {min }}=0.405, T_{\text {max }}=0.673$

Refinement

Refinement on F
$R=0.0338$
$w R=0.0402$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54180 \AA$
Cell parameters from 60 reflections
$\theta=20-22^{\circ}$
$\mu=1.73 \mathrm{~mm}^{-1}$
$T=220.0$ (2) K
Block
$0.43 \times 0.39 \times 0.23 \mathrm{~mm}$
Orange
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\text {min }}$

7548 measured reflections
3123 independent reflections
2785 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.014$
$\theta_{\text {max }}=70.17^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-7 \rightarrow 12$
3 standard reflections frequency: 60 min intensity decay: 1.0%
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Compound (3)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=284.34$
Triclinic
$P \overline{1}$
$a=6.137$ (8) \AA
$b=7.170(8) \AA$
$c=15.00(3) \AA$
$\alpha=79.00(8)^{\circ}$
$\beta=84.36(11)^{\circ}$
$\gamma=83.08(8)^{\circ}$
$V=641.2(15) \AA^{3}$
$Z=2$
$D_{x}=1.473 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer equipped with an Oxford
Cryosystems lowtemperature device (Cosier \& Glazer, 1986)
$\omega-2 \theta$ scans
Absorption correction: none
3309 measured reflections
2200 independent reflections
2068 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.09^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 8$
$l=0 \rightarrow 17$
3 standard reflections frequency: 60 min intensity decay: 4%

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.187$
$S=1.152$
2200 reflections
166 parameters
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 50
reflections
$\theta=9.5-16.0^{\circ}$
$\mu=0.418 \mathrm{~mm}^{-1}$
$T=150.0$ (2) K
Block
$0.55 \times 0.55 \times 0.40 \mathrm{~mm}$
Colourless

```
H atoms riding
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0945 P)^{2}\right.\)
    \(+1.3847 P 1\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

$S=1.1073$
2785 reflections
209 parameters
H atoms placed geometrically after each cycle
Weighting: Chebychev polynomial (Carruthers \& Watkin, 1979)

Extinction correction: Larson (1970)
Extinction coefficient: 50 (3)
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)
$\Delta \rho_{\text {max }}=0.49 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.72 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
1.200 (2) 1.485 (2)
1.467 (2)
1.368 (2)
1.204 (2)
1.488 (2)
120.3 (1)
118.4 (1)
121.3 (1)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (3)

O1-C6	$1.365(5)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.377(5)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.443(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.472(5)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.435(4)$	$\mathrm{C} 6-\mathrm{O} 6$	$1.207(5)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.355(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.473(5)$
$\mathrm{C} 4-\mathrm{O} 4$	$1.223(4)$	$\mathrm{C} 7-\mathrm{S} 1$	$1.744(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.472(5)$	$\mathrm{S} 1-\mathrm{C} 12$	$1.817(5)$
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 4$	$123.4(3)$	$\mathrm{C} 5-\mathrm{C} 7-\mathrm{S} 1$	$121.2(3)$
$\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 6$	$120.8(3)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{S} 1$	$116.8(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$115.6(3)$	$\mathrm{C} 7-\mathrm{S} 1-\mathrm{Cl} 2$	$104.1(2)$
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$	$122.0(3)$		

The thienyl ring in (3) exhibits twofold rotational disorder about the $\mathrm{C} 7-\mathrm{C} 8$ axis and the two components were restrained during refinement to be geometrically similar. The relative occupancy was refined to 0.681 (5) for the major component. The S atoms in both components were refined with anisotropic displacement parameters; the higher-occupancy C atoms were modelled with independent isotropic displacement parameters, while a common isotropic displacement parameter was refined for the remainder.

For both compounds, data collection: DIF4 (Stoe \& Cie, 1990a); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1990b). Program(s) used to solve structures: SIR92 (Altomare et al., 1994) for (2); SHELXTL (Sheldrick, 1994) for (3). Program(s) used to refine structures: CRYSTALS (Watkin et al., 1996) for (2); SHELXL96 (Sheldrick, 1996) for (3). For both compounds, molecular graphics: SHELXTL.

The authors thank EPSRC for provision of a fourcircle diffractometer and an Earmarked Studentship (KW), and Lonza Ltd for the generous gift of Meldrum's acid.

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Blake, A. J., Hunter, G. A. \& McNab, H. (1989). J. Chem. Res. (S), pp. 118-119; J. Chem. Res. (M), 0921-0943.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Gould, R. O., Taylor, P. \& Thorpe, M. (1995). PUCKER. Program for the Calculation of Cremer and Pople Ring Puckering Parameters. Version of 7 July 1995. The University of Edinburgh, Scotland.
Hunter, G. A. \& McNab, H. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1209-1214.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoc \& Cic (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe \& Cie, Darmstadt, Germany.

Watkin, D. J., Prout, C. K., Carruthers, R. J. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.

Acta Cryst. (1998). C54, 236-238

Chasmaconitine 0.5-Methanol Solvate \dagger

Masood Parvez, ${ }^{a}$ Waseem Gul, ${ }^{a}$ Saeed Anwar, ${ }^{b}$ Ghulam A. Miana, ${ }^{b}$ Atta-ur-Rahman ${ }^{c}$ and
Mohammad I. Choudhary ${ }^{c}$
${ }^{a}$ Department of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4,
${ }^{b}$ Department of Chemistry, Gomal University, Dera Ismail Khan, NWFP, Pakistan, and ${ }^{\text {c }}$ HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan. E-mail: parvez@acs.ucalgary.ca
(Received I April 1997; accepted 13 October 1997)

Abstract

The crystal structure of chasmaconitine hemimethanol solvate, $\mathrm{C}_{34} \mathrm{H}_{47} \mathrm{NO}_{9} .0 .5 \mathrm{CH}_{4} \mathrm{O}$, a C_{19} norditerpenoid alkaloid, isolated from the roots of Aconitum chasmanthum Stapf ex Holmes of Pakistani origin, contains discrete molecules separated by normal van der Waals distances. The fused-ring system contains one boat, one half-chair, two envelope and two chair conformations. The molecular dimensions are normal with no interactions between the alkaloid and the disordered solvate molecules; the mean bond distances are $\mathrm{C}_{s p^{3}}-\mathrm{N}$ 1.467 (14), $\mathrm{C}_{s p^{3}}-\mathrm{C}_{s p^{3}} 1.54$ (2), $\mathrm{C}_{s p^{3}}-\mathrm{O} 1.42$ (2), $\mathrm{C}_{s p^{2}}-$ O 1.337 (5) and $\mathrm{C}=\mathrm{O} 1.197$ (5) A.

Comment

Aconitum chasmanathum Stapf ex Holmes is a small herbaceous shrub which grows wild in Kashmir, Hattian and Rescuta Top. It contains a large number of norditerpenoid alkaloids, e.g. chasmaconitine and chasmanthinine (Achmatowicz \& Marion, 1964), homochasmanine (Achmatowicz \& Marion, 1965), indaconitine (Miana et al., 1971) and chasmanine (Pelletier et al., 1984). The pharmacological properties of the diterpenoid alkaloids which include the control and induction of cardiac arrhythmia, effects on smooth and skeletal muscles, central nervous activity and analgesia, have been reviewed (Benn \& Jacyno, 1983; Pelletier \& Page, 1986; Amiya
\dagger Alternative name: $(1 \alpha, 6 \alpha, 14 \alpha, 16 \beta)$-20-ethyl-13-hydroxy-1,6,16-tri-methoxy-4-(methoxyethyl)aconitane-8,14-diyl 8 -acetate 14 -benzoate 0.5 -methanol solvate.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1192). Services for accessing these data are described at the back of the journal.

